How Mathematicians ThinkUsing Ambiguity, Contradiction, and Paradox to Create Mathematics
|
![]() |

Zusammenfassungen

Nonlogical qualities, William Byers shows, play an essential role in mathematics. Ambiguities, contradictions, and paradoxes can arise when ideas developed in different contexts come into contact. Uncertainties and conflicts do not impede but rather spur the development of mathematics. Creativity often means bringing apparently incompatible perspectives together as complementary aspects of a new, more subtle theory. The secret of mathematics is not to be found only in its logical structure.
The creative dimensions of mathematical work have great implications for our notions of mathematical and scientific truth, and How Mathematicians Think provides a novel approach to many fundamental questions. Is mathematics objectively true? Is it discovered or invented? And is there such a thing as a "final" scientific theory?
Ultimately, How Mathematicians Think shows that the nature of mathematical thinking can teach us a great deal about the human condition itself.
Dieses Buch erwähnt ...
![]() Personen KB IB clear | Roger Penrose , Steven Pinker | |||||||||||||||||||||||||||
![]() Begriffe KB IB clear | ![]() ![]() ![]() ![]() ![]() ![]() | |||||||||||||||||||||||||||
![]() Bücher |
|
Zitationsgraph
Zitationsgraph (Beta-Test mit vis.js)
Volltext dieses Dokuments
Bibliographisches 
Beat und dieses Buch
Beat hat dieses Buch während seiner Zeit am Institut für Medien und Schule (IMS) ins Biblionetz aufgenommen. Beat besitzt kein physisches, aber ein digitales Exemplar. (das er aber aus Urheberrechtsgründen nicht einfach weitergeben darf). Aufgrund der wenigen Einträge im Biblionetz scheint er es nicht wirklich gelesen zu haben. Es gibt bisher auch nur wenige Objekte im Biblionetz, die dieses Werk zitieren.