/ en / Traditional / help

Beats Biblionetz - Texte

Power Hungry Processing

Watts Driving the Cost of AI Deployment?
Sasha Luccioni, Yacine Jernite, Emma Strubell
Erstpublikation in: FAccT '24: Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency Pages 85 - 99
Erste Seite des Textes (PDF-Thumbnail)
Dieses Biblionetz-Objekt existiert erst seit April 2025. Es ist deshalb gut möglich, dass viele der eigentlich vorhandenen Vernetzungen zu älteren Biblionetz-Objekten bisher nicht erstellt wurden. Somit kann es sein, dass diese Seite sehr lückenhaft ist.

iconZusammenfassungen

Recent years have seen a surge in the popularity of commercial AI products based on generative, multi-purpose AI systems promising a unified approach to building machine learning (ML) models into technology. However, this ambition of “generality” comes at a steep cost to the environment, given the amount of energy these systems require and the amount of carbon that they emit. In this work, we propose the first systematic comparison of the ongoing inference cost of various categories of ML systems, covering both task-specific (i.e. finetuned models that carry out a single task) and ‘general-purpose’ models, (i.e. those trained for multiple tasks). We measure deployment cost as the amount of energy and carbon required to perform 1,000 inferences on representative benchmark dataset using these models. We find that multi-purpose, generative architectures are orders of magnitude more expensive than task-specific systems for a variety of tasks, even when controlling for the number of model parameters. We conclude with a discussion around the current trend of deploying multi-purpose generative ML systems, and caution that their utility should be more intentionally weighed against increased costs in terms of energy and emissions. All the data from our study can be accessed via an interactive demo to carry out further exploration and analysis.
Von Sasha Luccioni, Yacine Jernite, Emma Strubell im Text Power Hungry Processing
Luccioni and her team looked at the emissions associated with 10 popular AI tasks on the Hugging Face platform, such as question answering, text generation, image classification, captioning, and image generation. They ran the experiments on 88 different models. For each of the tasks, such as text generation, Luccioni ran 1,000 prompts, and measured the energy used with a tool she developed called Code Carbon. Code Carbon makes these calculations by looking at the energy the computer consumes while running the model. The team also calculated the emissions generated by doing these tasks using eight generative models, which were trained to do different tasks.
Generating images was by far the most energy- and carbon-intensive AI-based task. Generating 1,000 images with a powerful AI model, such as Stable Diffusion XL, is responsible for roughly as much carbon dioxide as driving the equivalent of 4.1 miles in an average gasoline-powered car. In contrast, the least carbon-intensive text generation model they examined was responsible for as much CO2 as driving 0.0006 miles in a similar vehicle.
Von Melissa Heikkiläarchive im Text Making an image with generative AI uses as much energy as charging your phone (2023)

iconBemerkungen

The study is the first time researchers have calculated the carbon emissions caused by using an AI model for different tasks, says Sasha Luccioni, an AI researcher at Hugging Face who led the work. She hopes understanding these emissions could help us make informed decisions about how to use AI in a more planet-friendly way.
Von Melissa Heikkiläarchive im Text Making an image with generative AI uses as much energy as charging your phone (2023)

iconDieses Konferenz-Paper erwähnt ...


Personen
KB IB clear
Sandhini Agarwal , Dario Amodei , Amanda Askell , Christopher Berner , Tom B. Brown , Mark Chen , Benjamin Chess , Rewon Child , Jack Clark , Kewal Dhariwal , Prafulla Dhariwal , Scott Gray , Tom Henighan , Ariel Herbert-Voss , Christopher Hesse , Jared Kaplan , Gretchen Krueger , Mateusz Litwin , Benjamin Mann , Sam McCandlish , Arvind Neelakantan , Alec Radford , Aditya Ramesh , Nick Ryder , Girish Sastry , Pranav Shyam , Eric Sigler , Melanie Subbiah , Ilya Sutskever , Clemens Winter , Jeffrey Wu , Daniel M. Ziegler

Aussagen
KB IB clear
Generative Machine-Learning-Systeme benötigen viel Energie

Begriffe
KB IB clear
elektrische Energie , Energie , Generative Machine-Learning-Systeme (GMLS)computer-generated text , Künstliche Intelligenz (KI / AI)artificial intelligence , machine learning
icon
Bücher
Jahr  Umschlag Titel Abrufe IBOBKBLB
2020 local web  Language Models are Few-Shot Learners (Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Kewal Dhariwal, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, Dario Amodei) 3, 2, 8, 2, 8, 5, 6, 4, 6, 7, 4, 3 43 5 3 167

iconDieses Konferenz-Paper erwähnt vermutlich nicht ... Eine statistisch erstelle Liste von nicht erwähnten (oder zumindest nicht erfassten) Begriffen, die aufgrund der erwähnten Begriffe eine hohe Wahrscheinlichkeit aufweisen, erwähnt zu werden.

icon
Nicht erwähnte Begriffe
Chat-GPT, GMLS & Bildung

iconTagcloud

iconZitationsgraph

Diese Grafik ist nur im SVG-Format verfügbar. Dieses Format wird vom verwendeteten Browser offenbar nicht unterstützt.

Diese SVG-Grafik fensterfüllend anzeigen

iconZitationsgraph (Beta-Test mit vis.js)

iconErwähnungen  Dies ist eine nach Erscheinungsjahr geordnete Liste aller im Biblionetz vorhandenen Werke, die das ausgewählte Thema behandeln.

iconAnderswo finden

icon

iconVolltext dieses Dokuments

Auf dem WWW Power Hungry Processing: Artikel als Volltext ( WWW: Link OK )
Auf dem WWW Power Hungry Processing: Artikel als Volltext (lokal: PDF, 1520 kByte; WWW: Link OK )
Auf dem WWW Power Hungry Processing: Artikel als Volltext (lokal: PDF, 1520 kByte; WWW: Link OK )

iconAnderswo suchen  Auch im Biblionetz finden Sie nicht alles. Aus diesem Grund bietet das Biblionetz bereits ausgefüllte Suchformulare für verschiedene Suchdienste an. Biblionetztreffer werden dabei ausgeschlossen.

iconBeat und dieses Konferenz-Paper

Beat hat Dieses Konferenz-Paper erst in den letzten 6 Monaten in Biblionetz aufgenommen. Er hat Dieses Konferenz-Paper einmalig erfasst und bisher nicht mehr bearbeitet. Beat besitzt kein physisches, aber ein digitales Exemplar. Eine digitale Version ist auf dem Internet verfügbar (s.o.). Aufgrund der wenigen Einträge im Biblionetz scheint er es nicht wirklich gelesen zu haben. Es gibt bisher auch nur wenige Objekte im Biblionetz, die dieses Werk zitieren.

iconBiblionetz-History Dies ist eine graphische Darstellung, wann wie viele Verweise von und zu diesem Objekt ins Biblionetz eingetragen wurden und wie oft die Seite abgerufen wurde.