Deep Learning in Neural NetworksAn Overview (Preprint)
|
Diese Seite wurde seit mehr als 7 Monaten inhaltlich nicht mehr aktualisiert.
Unter Umständen ist sie nicht mehr aktuell.
Zusammenfassungen
In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarises relevant work, much of it from the previous millennium. Shallow and deep learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.
Von Jürgen Schmidhuber im Buch Deep Learning in Neural Networks (2015) This is the preprint of an invited Deep Learning (DL) overview. One of its goals is to assign credit
to those who contributed to the present state of the art. I acknowledge the limitations of attempting
to achieve this goal. The DL research community itself may be viewed as a continually evolving,
deep network of scientists who have influenced each other in complex ways. Starting from recent DL
results, I tried to trace back the origins of relevant ideas through the past half century and beyond,
sometimes using “local search” to follow citations of citations backwards in time. Since not all DL
publications properly acknowledge earlier relevant work, additional global search strategies were employed,
aided by consulting numerous neural network experts. As a result, the present preprint mostly
consists of references. Nevertheless, through an expert selection bias I may have missed important
work. A related bias was surely introduced by my special familiarity with the work of my own DL
research group in the past quarter-century. For these reasons, this work should be viewed as merely a
snapshot of an ongoing credit assignment process. To help improve it, please do not hesitate to send
corrections and suggestions to juergen@idsia.ch.
Von Jürgen Schmidhuber im Buch Deep Learning in Neural Networks (2015) Dieses Buch erwähnt ...
Personen KB IB clear | Warren McCulloch , Walter Pitts | ||||||||||||||||||
Begriffe KB IB clear | auto encoder (AE) , deep learning , Feed forward neural networks , Künstliche Intelligenz (KI / AI)artificial intelligence , Lernenlearning , machine learning , Neuronales Netzneural network , patternpattern , Perceptron , reinforcement learning , supervised learning , unsupervised learning | ||||||||||||||||||
Bücher |
|
Dieses Buch erwähnt vermutlich nicht ...
Nicht erwähnte Begriffe | Intelligenz |
Tagcloud
Zitationsgraph
6 Erwähnungen
- Beyond Zero and One (Andrew Smart) (2015)
- Machine Learning - The New AI (Ethem Alpaydin) (2016)
- If...Then - Algorithmic Power and Politics (Taina Bucher) (2018)
- Machine Learning for Teachers - Evaluation und Entwicklung von Lehr- und Lernmaterialien zum Thema Künstliche Intelligenz für Lehrpersonen ab Sekundarstufe 1 (Thomas Zurfluh) (2022)
- Künstliche Intelligenz in der Bildung (Claudia de Witt, Christina Gloerfeld, Silke Elisabeth Wrede) (2023)
- Unter dem Zeichen Künstlicher Intelligenz - Berufe, Kompetenzen und Kompetenzvermittlung der Zukunft (Gergana Vladova, Clementine Bertheau)
- Erklärbare Künstliche Intelligenz im Kontext von Bildung und Lernen (Katharina Weitz)
Co-zitierte Bücher
Volltext dieses Dokuments
Deep Learning in Neural Networks: Gesamtes Buch als Volltext (: , 564 kByte; : 2021-03-21) |
Anderswo suchen
Beat und dieses Buch
Beat hat dieses Buch während seiner Zeit am Institut für Medien und Schule (IMS) ins Biblionetz aufgenommen. Beat besitzt kein physisches, aber ein digitales Exemplar. Eine digitale Version ist auf dem Internet verfügbar (s.o.). Es gibt bisher nur wenige Objekte im Biblionetz, die dieses Werk zitieren.